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LIntroduction

Introduction

» Basic framework (want to solve):
> Life cycle versions of Bewley-Aiyagari-Huggett model
> Features of the model

1. Idiosyncratic risks=-heterogeneity
2. Aggregation<distribution dynamics

> Steady state, transition, and dynamics
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Numerical Methods

» Global solution methods

» &local approximation methods (e.g., linear quadratic
approximations)

> around the deterministic steady-state
» RBC, New Keynesian DSGE models etc.
> called "Perturbation method"

» want to know policy functions

» Why global solution methods?

1. You may not know steady states before solving the problem
2. Heterogeneous agents model: super rich and poor
3. Income risks that individuals face is usually very large

» =Policy functions are potentially nonlinear
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Numerical Methods (cont.)

» Need some numerical methods (off-the-shelf techniques)

» Optimization: Judd (1998), Chap.4

» Nonlinear equations: Judd (1998), Chap.5

» Functional approximation: Judd (1998), Chap.6

» Numerical integration/differentiation: Judd (1998), Chap.7

» Useful books

» Judd (1998), Marimon and Scott (1999), Miranda and Fackler
(2002), Heer and Maussner (2009)
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Numerical Methods (cont.)

1. Value function iteration (VFI)
> Finite iteration in life cycle models
2. Endogenous gridpoint method

» use the Euler equation

> Both methods are almost identical when solving life cycle
models

» All codes used here are available from

> http://homepage2.nifty.com/~tyamada/teaching/numerical.html
» written in Fortran 90/95
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Software Choice

» Matlab/Gauss/Scilab/Octave

» Languages for scientific computing; matrix-oriented
» Some useful tools: DYNARE, CompEcon (Miranda and
Fackler,2002)

» C/C++/Fortran:

» Packages (Not free): IMSL/NAG
» Numerical recipes (Book): Press et al. (2007)
» Subroutine libraries (Free): LAPACK/BLAS/MINPACK etc.

» Mathmatica/Maple:
» Symbolic math



Lectures on Numerical Methods
LIntroduction
L Design of this Slide

Guide Map

1. Two-period model
2. Three-period model
3. (Full) Life cycle models:

3.1 Steady State
3.2 Transition: Yamada (2011,JEDC)
3.3 Aggregate shock
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L Basic Framework

Two-period Model

Consider a two-period model (no uncertainty)
» Basic setup:

1—y 1—y
Cy o
max +'Bl—'y'

cy,co,a 1-— Y

s.t.

cy +d =y+a,
co = ss + Ra’

» (cy,cp): consumption, B: discount factor
» a’: savings, a: initial asset (given), R: gross interest rate
» y: labor income (deterministic), ss: social security benefit
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L Basic Framework

Calibration

» How to solve the two-period model?

» Backward induction

» Before solving the model quantitatively, we need parameters

» Usually this process is called "calibration"
» One period is 30 years: Song et al. (2009)
» B=0985%0 ¢y =2 R=1025%0 y =1 s5=04

» What we want to know are policy functions

» cy = f¥(a): consumption function of young agents
» co = 9(d'): consumption function of old agents
» 3’ = g(a): saving function
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Numerical Methods

1. In the last period (old), agents consume all wealth

» co=f9(d)=ss+Ra
> Note that R and ss are given

2. Given the consumption function of old household f©(a’), we
compute young's policy function from the Euler equation:

u/(Cy) = ‘BRU/(Co),

u(y+a—a) = BRI(FO(S))
BRU (ss + Ra')
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Consumption Function (Old):
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Consumption
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Numerical Methods (cont.)

» How to find the policy functions f¥ (a) and g(a) for young
households from the Euler equation?

» There are some approaches
1. Discrete state space method
> Solve the Euler equation over discretized asset grids
2. Projection method: Judd (1992)

> Approximate policy functions by polynomial
> Finite element method: McGrattan (1996,JEDC)

3. Endogenous gridpoint method (EGM): Carroll (2006)
4. Parametric expectations algorithm (PEA): Christiano and
Fisher (2000)
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Discrete State Space Method

» Discretize the initial asset (grid): a; € {amin,-- - 3max |
» Tips: more grids near zero (if a borrowing constraint exists)

» Solve the Euler equation for each a;
' (y+ai—a') = BRU(FO(d)),
» How to solve the Euler equation?

! 4 _ J Oa/
iy ta- )= PR V(@)

given choice params. known
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Discrete State Space Method (cont.)

> Use nonlinear equation solver
» Find a zero of the residual:
U (£9(d))
CD(ai):ﬁR/ N
u(y+ai— )
» Useful techniques to find a zero:

» Bisection method: bisect a zero between ani, and amax
» Newton methods
» Broyden's method: a variant of Newton methods

» You can find several root-finding subroutines!

» fzero: Matlab
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Discrete State Space Method (cont.)

> You have a combination of current asset and savings

/
> {ai 3} = {cq}
» Use interpolation if you want to know consumption between
the discretized grids, a; < a < aj41
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Projection Method

> In the discrete state space method, we compute a set of
discretized asset and consumption
» Approximating the saving function over state space

» E.g., monomial approximation

N
ad=g(agp) = Z

> Generally Chebyshev polynomial has some useful properties
N
/ A
d=g(a9)=) ¢,Tn(a)
n=1

» Th(a): Basis function, e.g., cos((n — 1) arccos a)
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Projection Method (cont.)

v

Find coefficients {¢, }\_; that minimizes the residual over
state

/<I>(a; ¢$)da=0

How to compute the residual over state space?

v

v

E.g., Collocation method

» Given evaluation points {am},
P(am;¢) =0, m=1,.... M

> m < n: impossible to determine coefficients {¢, }_,!

v

Other way to evaluate the residual, see text books
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Endogenous Gridpoint Method

» Usually root-findings (using nonlinear equation solver) need
computation time

> many iteration to find a zero
» Carroll (2006,EL): Endogenous Gridpoint Method

» Change the timing of discretization and state space

1. Discretize next period’s asset: a; € {ay,...,a}}
2. Solve consumption function over cash-on-hand



Lectures on Numerical Methods
LTWo—period Model
LNumerical Methods

Endogenous Gridpoint Method (cont.)

> Define RHS of the Euler equation as
I'(a}) = BRu'(ss + Ra})

» Because the marginal utility of CRRA utility function is
invertible,

Jevy) = T,
C;Z = TI(q),

Cy’j = F(a'-)f%
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Endogenous Gridpoint Method (cont.)

> We have a pair of {cy ;, a;}

> cyj+ aj- = xj(= y + a) is cash-on-hand
» We know consumption function over cash-on-hand

Cy = ?Y(X)
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Endogenous Gridpoint Method (cont.)

But, what we really want to know is consumption over
current asset

» Retrieve current asset from the cash-on-hand
Xj = yTaj
a = Xi—Yy

» Policy function is a pair of {c;,a;}: ¢ = f¥(a;), for
i=1....J
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Numerical Examples

1. Consumption function when old
» mentioned above
2. Consumption function when young
3. Saving function
4. Numerical errors

» Closed-form solution

4 = y+a-— [,BR]_%SS
1+ [BR] 7R
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Consumption Function (Young)
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Saving Function

25 T T T T
2l
‘a 1.5
<
3
z 1r
0.5F
—EGM
===Analytical
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Retrieve Current Asset

Next Asset
w

N
T

Current Asset

10

15
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Endogenous Gridpoint Method (cont.)

» This idea is applicable to any finite (and in fact infinite)
horizon problems

> Need FOCs
> Let's apply the EGM to three period model!
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L Basic Framework

Three-period model
Extend the model to three-period with uncertainty

» Consider a three-period model:

1—y 11— 1—y
Cc C C
E Y M 2 -0
max 1_7+51_7+‘B1_7 ,
s.t.

cy +auy = yy + ay,
cv +ao = ym + Ram,
co = ss+ Rap

(cy,cm, co): consumption, (ay, ap, ap): asset holdings
(yy.ym): labor income

>
»>
» R: gross interest rate, ss: social security benefit
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Three-period model (cont.)

Labor income is uncertain at middle

» E.g., labor income distribution

M = ymte,
e ~ N(0,0?)

» Need numerical integration techniques

» Discretize ¢
» Gauss-Legendre, Gauss-Chebyshev quadrature etc.

» Consider a very simple case: {y,ugh, 19"} with prob. 3
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Three-period model (cont.)

» How to solve the model?

» Backward induction again

» Why the three-period model is NOT a trivial extension of
two-period model?

> Need an additional state variable: yyu
» Need functional approximation
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Three-period model (cont.)

1. Old: co = f9(ap) = ss + Rap
2. Middle: solve the Euler equation for each (am.;, ym)

u’(yM + Ra/\/],,' — ao) = /SRu'(fO(ao))

» Get a policy function M (ap;, ypy) using the EGM (or other
methods): {c?,',glh, a?/',g?} and {cjo", alow.
» This step is completely the same as in the two-period model

3. Young: solve the Euler equation again

u'(yy + Ray,; — am) = BREU (FM (am, ym))
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Three-period model (cont.)

» Policy function at middle £M(ap, yp) is a set of discretized
points

high _high low _low
> {CM,i 1Ay bl avt

» What if the choice variable a;; is between asset grids?

am,i < ay < am,i+1

> Interpolation

> Linear approximation: non-differentiable, interpl

» Cubic spline interpolation: differentiable, spline

» Shape-preserving spline interpolation: differentiable with
concavity
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Three-period model (cont.)

» Calibration

> One period is 20 years

» B=0.98520 ¢ =2 R=1025%
»yy =1

>y = 14e YW =1—¢ =02
ss=0.4

v
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Consumption Function (Old)
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Consumption Function (Middle)
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Consumption Function (Young)

3.5

Consumption
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Saving Function (Middle)
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Saving Function (Young)
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Life Cycle Models

> Generalize the simple two (three)-period models

» Bewley/Huggett/Aiyagari framework
» Agents live long periods

» Features of the model:

Life cycle — worker and retiree
Idiosyncratic labor income risks
Mortality risks (for demographic change)
Dynamic general equilibrium

v Vv VY

1. Steady state
2. Transition
3. Aggregate shocks
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Household Problem

> A continuum of households exists
» There is no aggregate uncertainty

> Preferences are represented by

J S
max [E; Zgjﬁf_l 11_
j=1 v
»jed{l,..., jret .., J}: age
j—1
» G = ¢;: unconditional probability of surviving to age j

i=1
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Budget Constraint

> Budget constraints for worker and retiree:

G+ar < (1+r)(a+b)+(1-7°)wyz,
¢+ap1 < (L+4r)(aj+b)+ss,
ajr1 = 0.

> r: interest rate, w: wage, b: accidental bequest (defined later)
> 1 age-specific productivity, z: idiosyncratic labor income risk
» T°°: payroll tax for social security
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Household Problem (cont.)

» ldiosyncratic labor income risks
> Storesletten et al. (2004,JME) etc.

> Logarithms of hours worked follows
Inzjs1 =plnz +x;, x~ N(0,02)

> p: persistence, K disturbance
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Household Problem (cont.)

Bellman equation for workers: j =1,..., /™
Vi(a,z) = max{u(q)+¢pEV;1(d.2) },
s.t.
Gt+ar < (L+r)(a+b)+wyz,
aj+1 Z 0.
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Household Problem (cont.)

Bellman equation for retirees: j = j*" +1,...,J
Vi(a) = max{u(q)+9,BVin(a)},
s.t.
G+ta < (1+r)(a+b)+ss,
djt+1 Z 0.
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First Order Conditions

» Euler equation:

v (g) > ¢;8(1+r)Ed (¢1)
» Why inequality?
> A liquidity constraint exists: a;y1 > 0

» What we want to know: policy function gj (a, z)
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Transition Law of Motion

» Probability space: ((A X Z), B(Ax Z),®))

» B(A x Z): Borel o-field
» ®;(a, z): probability measure

» Transition function from current state (a, z) to next state

X eB(Ax2)

Q((Ax 2Z),X) = Z { Pr(z,2) ifg(az)eX

Jes 0 else

» The distribution function by age:

@1 (X) = / Q (A x 2),X)d®;, (VX € B(Ax Z))
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Demography

> Some households die with probability ¢,

» Transition of the fraction of cohort
1
Pip1 = 1 +g¢jP‘j

> pja fraction of age j, g: population growth rate

> f:o Hp= 1: total population is normalized to one
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Production

> Aggregate capital:

K= Zyj/adq) 2)

» Aggregate labor (exogenously fixed):

L—Zyj/njzdcb 2,2)

> A representative firm: Cobb-Douglas production function

Y = AK? 177
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Government

» Social security system

jret J
Zyj/rsswnjzjdcbj(a,z) = ) p;ss
= J=1
J
= ) wmowl
j:jret+1
- pwl

» Accidental bequest

J
b=Y 1 [(1-9)8(2.2)d%,(a.2)
j=1
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Definition of RCE

Recursive competitive equilibrium is a set of value function V/,
policy function g, interest rate r, wage w, tax rate T°°, and a
distribution function @ that satisfies the following conditions:

1. Household's optimality
2. Firm’s optimality

r=0AK 1170w = (1-0)AKIL™®

3. Market clearing conditions
» goods, capital and labor markets
4. Government budget constraint

5. Stationarity of distribution
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Steady State

Computing a Steady State: Algorithm

1. Preamble: compute aggregate labor supply L, the tax rate for
social security T°°, and approximate idiosyncratic shocks
Initial guess: ry
Solve a household’s problem and get policy functions: gj (a, z)

Compute a cumulative density function: ®;(a, z)

ok W

Using the cumulative density function, compute aggregate
capital K1 and new interest rate

6. Check whether new interest rate ry is sufficiently close to ry

6.1 Yes: It's a steady state!
6.2 No: repeat steps 3—6 with a new interest rate
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How to Solve Life Cycle Models

1. Solving household’s problem

1.1 Value function iteration (VFI)
1.2 Projection method
1.3 Endogenous gridpoint method (EGM)

> This step is also applicable for structural estimation: See
Gourinchas and Parker (2002), Kaplan (2010)
2. Computing density function

2.1 Simulation
2.2 Approximate density function

3. Find an equilibrium price (interest rate)

» Bisection method etc.
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Dynamic Programming Approach

» Good points of VFI

» Safe (contraction mapping property): not important in life
cycle models

» Useful for nonlinear problems
> Many application

» Bad points of VFI

» Generally slow (but the number of iteration is fixed in life cycle
models)
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Endogenous Gridpoint Method

» Good points of EGM

> Reliable
> Fast (need no optimization)

» Bad points of EGM

» Without FOCs, it may not be applicable (e.g., nonlinear
problems)
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VFI

» Basic idea is the same as in infinite horizon models
» Points

» Find a maximum: Optimization
» Approximation: Value function is concave

» Discretized grid
a; € {aminy ey amax}
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VFI (cont.)

General idea: use backward induction again!

> Age J:
Vi(ai) = u((L+r)(ai+ b) +ss)

> Age J—1:

Vo1 (a)) = m;/ax{u (L4 r)(ai+b) +ss—a) +¢j5\7j (a)}

a

> lterate to age 1:
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VFI (cont.)

» Household’s problem
Vi(ai,z) = max{u((1+r)(a + b) +wn;z — a')
+¢;PEV; 11 (3, 7) }

» Optimization tools: fminsearch in Matlab

» Golden search(=Bisection method)
» Quasi-Newton method

» Functional approximation:

» Vi1 (4, Z)) is generally strictly concave function
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Endogenous Gridpoint Method (cont.)

» First order condition is defined as follows:

u'(¢) = ¢;B(1+ r)Eu' (1)

» Discretized grid: 3’ € {amin,---, 3max}> min = 0

> For example, #grid= 100
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Endogenous Gridpoint Method (cont.)

» Cash-on-hand of age j + 1:

/:{ (1+r)(a +1+b)+W771+1z
(1+r)(a j+1—|—b)—i—ss

» Right hand side of the Euler equation

&, z,j) = (1+ r)(p BEc., j+1
= (1+r)¢;BEfa(x,2)77

= ?J-(X,z): consumption function over cash-on-hand
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Endogenous Gridpoint Method (cont.)

» FOC is redefined as

u(¢) >T'(7,z.))
» Thus, we have consumption as

G =u"T'(F,2,])

» If the Euler equation holds with strict inequality, a/ =0, i.e.,
hand-to-mouth consumer
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Tauchen’s Methods

» How to calibrate idiosyncratic income risks?

» Empirical studies: Blundell et al. (2008,AER), Storesletten et
al. (2004,JPE) etc.

» How to approximate it?

» Tauchen (1986)/Tauchen and Hussey (1992)
» Floden (2007): approximation error of Tauchen's methods
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Tauchen’s Methods (cont.)

» Consider AR(1) Process
> yt = log zt

Yer1 = pye + Kt k&~ N(0,02)

Yes1 = py + 0y (1= A1) 2%, & ~ N (0,1)
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Tauchen’s Methods (cont.)

» Approximate AR(1) process by finite Markov chain
» For example, 7-states
» Suppose y¥ =30, y* = —30,: State space
yls = {3¢,, —20,,—0,,0,0,,20,,30,}

» Define intervals of the seven-states as follows:

h =30y, 2‘7y)v h =] 5%y 2‘7y)v
3 1 1 1
I3 - [ 20—)/ _50—)’) l4 [ 20—)/ 2UY)
1 3 3 5
s [2‘7y'2‘7y>v16 [any20'y)y



Lectures on Numerical Methods
LLit’e Cycle Models
L How to Approximate AR(1) Process

Tauchen’s Methods (cont.)

» Current state: y' = logz € Y'°8
= Next state: y/ = logz’ € Y'°8

1 1 (x—logz)?
e 2 o dx
V2o,

» Range between states is defined as w = y* — yk—1
» For each i, if j € [2, N — 1], then

;= Pr(logz = y/|logz=7") ://
i
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Tauchen’s Methods (cont.)

> As a last step, take exponent to the log AR(1) process:
{|Og Zt} = {Zt}
» Normalize Ez =) ,. 7z 27T (z) = 1 (not necessary)

Z=Az,....z1}
ef3oy e7217y e % 1 &% eZUy e3(7£
Ez ' Ez ' Ez "Ez' Ez' Ez ' Ez
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Density Functions

» How to compute the density function?
1. Simulation

» Easy to implement, but errors may be large (if #sample is
insufficient)
> Easy to compute some statistics: variances, Gini etc.

2. Approximate density function

> Heer and Maussner (2009)/Young (2010,JEDC)
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Density Functions (cont.)
Simulation-based method

1. Generate a series of idiosyncratic income shocks for S

households, e.g. S = 10,000

> {z 10, 000. index i represents household

2. Guess initial asset distribution ai: a; = 0 by assumption
3. Using policy functions (we already get), compute a series of
asset holdings

a) = gi(ah.z)) — ah = &1(ah, ) — -+
> Notice that some households may die before J

4. Aggregation
10,000

J .
K= Zy Z a;/S

j=
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Density Functions (cont.)

» Approximate the density function d®; (a, z) by linear
interpolation
» Solve the density function forwardly

» Take discretized grid: ax € {amin,---, dmax}
> should be finer than policy function iteration: e.g., 10,000
grids

» A household with (a, z) saves & = gj(ax, z)
» However, &’ may not be on the discretized grid
» Define a weight w as follows

El —ar .

w = 3 € [ay, ap]

ap — ag,
» Households with (ag, z) are divided a; and aj, by the rule

{ Pr(z,2)(1 — w)d®;j (a, z)
Pr(z, 2" )wd®;j (a, z)



Lectures on Numerical Methods
LLit’e Cycle Models
LComputing Density Function

Approximated Density Function

0 5 10 15
Current Asset
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Find a Steady State

> Need to find a fixed point of interest rate

» same as in the Bewley model with infinitely-lived agents
» Use a bisection method: Aiyagari (1994)

» Set an initial interest rate ry

» update to ry
» if iteration error is sufficiently small, e.g. € = 0.00001, stop

||"k+1 - f’k|| < g, or, HKSUPPW _ Kdemand

<e

» Aggregate demand and supply curve in the model
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Capital Demand and Supply

3-8;/' —Demand ||
===Supply
3.8 ; : i
3.5 4 4.5 5 5.5

Interest Rate (%)
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Calibration
How to Calibrate Life Cycle Models

» Many empirical research: choose a target
jt =46, J =81

B =0.97: Targetis K/Y ~3

7Y = 2: microeconomic evidences
Idiosyncratic income risks

> Blundell et al. (2008,AER) etc.
> p =098, oy = 0.01

v vy VY

» Macroeconomic variables: Japanese economy

» 0 =0.377, 6 = 0.08

v

Age-efficiency profile: {’7j}
> Hansen's (1993) method

v

Population distribution: {;}
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Numerical Results

» Numerical Results
» Consumption and asset profiles: {c;, aj}fzo

» Economic inequality: Storesletten et al. (2004,JME)
» How much consumption insurance?

» Computation time (Fortran): 180 sec

» Fgrid for policy function= 100
» #grid for density function= 10, 000
» #grid for AR1 process= 15
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Consumption Profile
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Earnings Profile
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Asset Profile
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Inequality over Life Cycle
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Applications

» Endogenous labor supply:
» Add intra-temporal FOC to the original problem
u (¢, 1—h)
z— _h\
W% = e 1= h)
» Can we use the endogenous gridpoint method again?

> Yes: Barillas and Fernandez-Villaverde (2007), Krueger and
Ludwig (2006)
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Applications (cont.)

» Economic inequality:

» Huggett (1996,JME), Storesletten et al. (2004,JME),
Heathcote et al. (2010,JPE)
> Include transitory shocks, education background, marriage etc.

> Social security reforms:

> Imrohoroglu et al. (1995,1997)
> Need additional state variable for social security accounts

» Optimal taxation:
» Conesa, Kitao and Krueger (2008)

) =Ty - (" +0) T
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And More...

» Two natural extension of life cycle models

1. Transition path
» Social security reforms, tax reforms, aging etc.
2. Aggregate shock

» Business cycle, asset pricing etc.
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Transition

» Literature:

» Conesa and Krueger (1999)
» Nishiyama and Smetters (2007,2009)

» Why transition?

» Welfare implications may differ between steady state
comparison and considering transition path explicitly

» Why difficult?

> Need to solve many generations problems
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Transition (cont.)

» Basic ideas:

» application of computing a steady state with very long
backward induction

» T (terminal period)— T —1,---,— 1 (initial period)
» Need computation time: several hours

» Transition path between two steady state
» Without final steady state, it is impossible to compute the

transition path (where to go?)

> Initial steady state is not MUST (e.g., Auerbach and Kotlikoff,
1992)

» But, you need to have an initial wealth distribution for each
age, ®;(a, z): difficult to calculate
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An Example

Yamada (2011,JEDC)

> Research question: How well does the life cycle model work?

» Results: Macroeconomic variables and inequalities in Japan is,
at least partially, explained by the standard life cycle model
with macroeconomic and demographic changes

» Include deterministic TFP growth rate and demographic
change in the model:

Yy = Ak

Hiviee1 = ek
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Model (cont.)

Original Problem

» Bellman equation:

Vie(a5) = max {u(Gyas, o) + ) BEViia e (2,5}

c,a’,h

[0,y (e — hjey )t
u(jerj b erj) = =2 1=~

> t: calender year, j: age
> hj ¢1j: labor supply (endogenous), h;: time endowment
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Model (cont.)

» Budget constraint:

Gt ajrnerr = (L (1 —=77P)r) (3, + be) + e
Jii = { (1 =18 — 1) weryjeihy ¢
’ Pewily

> {Tltab,_[iap

system

, TY }: taxes for labor, capital and social security

» ldiosyncratic labor productivity shock s = (oz, z, 8):

Ine: = a+z+eg,

|an+1 = p|an—|—Kj
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Model (cont.)

> Aggregate economy:

100
K = 2j:20 }/lj't/aj,td@j,t (3,5)

L = Zj 20.””/’7,61 hje4jdPj e (a,s)
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Model (cont.)

» Social security system:

65 ss
Zj:QO Vj,t/Tt wer]j€jhje1jdPj e (a, s)
_ voloo !
— Luj=66 VJ tPWelt.

» Government budget constraint:

_ 100 cap
G = Zj:QOyj,t/Tt rtaj,td(pj,t(avs)

T 20yjt/T|tabWt171ej hj¢1jd®j+(a,s)
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Model (cont.)

Detrended Problem
> Detrend the problem:

vj,t(3,5) = max {U(Ej,tﬂ‘v hjer)) + ¢j,t:Bt]EVj+l,t+1(é/' 5’)}

c,a',h

& t+1(h hje) T
I—v

R (G S

> Be=B(1+g) I, 14 g = AT /A” o)

(CJ t+j hj t+1)

> Cjt_cjt/A
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Model (cont.)

> Budget constraints of the detrended problem

G+ (1+g)dnen =0+ 1 —7")r) (3 + Et) + e

Vi = { (1-7¥ - TE) Wetp e,
g P Ly
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Algorithm

1. Compute initial and final steady states: 1980 and 2200

2. Set an exogenous path of {g¢, ¢,, b }22%%,, and guess an

equilibrium sequence of {r?, w?}229%,.

3. Given the policy function of the final steady state, compute a

sequence of policy functions using the EGM by backward
induction

4. Given the policy functions, compute the distribution function
from 1980 forwardly and compute aggregate variables,
{r}, w}12200
t "t Jt=1980
5. Check whether new factor prices {r}, w}}. are sufficiently
close to the old ones {r?, w0} for every year. If these are not

close, update the price sequences and repeat steps 3 — 4

6. If the factor prices are close in all periods, then stop!
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Algorithm (cont.)

> In step 3, use the EGM again
» FOCs:

ug (e h—hjy)

L (14+ Q=180 re)
2 ‘Pj,t:Bt <1 +gt)

~ - 1 — 0 Ej,f
P = max [ht - ( o ) (1- T%S)Vvtﬂjej'()]

o - .
IEUC(Cj+1,t+1, h— hj+1,t+1)
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Algorithm (cont.)

» Define RHS of the Euler equation:

(1+ (1 =157 res)
(14 gt)

¢ ‘B E; [Eﬁl,tﬂ(ﬁtﬂ - i’j+1,t+1)1_‘7]1—7
Jtrt) S~

U (3,5) =

» First order condition:
up (e, he — hje) =T} (3 5)

» Cobb-Douglas utility function is invertible
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Example: Transition Path

(a) After-Tax Interest Rate
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Example: Transition Path

(b) Capital-Output Ratio

1.6 —e-Model
=+=Hayashi & Prescott

11121)80 1985 1990 1995 2000
Year
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Example: Transition Path

(d) Saving Rate
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Example: Transition Path

(a) Earning Inequality (Variance of Log)
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Example: Transition Path

(b) Income Inequality (Variance of Log)
0.15 ‘ ;
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Example: Transition Path

(c) Consumption Inequahty (Varlance of Loc
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Example: Transition Path

(@) Earning Inequal|ty (Varlance of Log)
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Example: Transition Path

(b) Consumption Inequallty (Vanance of Log
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Aggregate Shock

» Add aggregate shock (e.g., TFP shock) in the model
» Storesletten et al. (2007,RED), Krusell et al. (2011)
> Why difficult?
> Distribution affects factor prices:

v (¢e) > ;B (14 r(Kep1)) Bu' (gga,ev1)

» Distribution function in the state space
Vi(a, z; @) = max {u(cj) +&BEV;41(d, 2 CID)}

» Distribution function is infinite-dimensional objects
=-impossible to solve
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Aggregate Shock

» Approximate aggregation

» Krusell and Smith (1998), den Haan (1997)
» Use not exact distribution function, but moments

» E.g., approximate prediction function:

log Kir1 = By(A) + B, (A) log K;
» Approximated Bellman equation:

Vj(a, z; K, A) = max {u(cj) —+ CJ-,BIE\/J-H(a', 7z K, A)}
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Another Approach to Solve OLG Models

v

Add another state variables=Curse of dimensionality

» E.g., physical asset and financial asset: 50 x 50 = 2,500

v

Smolyak algorithm: sparse grid approximations

v

Stochastic overlapping generations models

» Krueger and Kubler (2003,2005)
» Malin, Krueger and Kubler (2010)
> Glover, Heathcote, Krueger and Rios-Rull (2011)

v

Points:

> No idiosyncratic risks
» Explicit portfolio choices
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Advanced Topics

» Recent CPU have double/quad cores
» Core2Duo, Core i7, Xeon etc.
> Use many cores simultaneously

» MPI: need many PCs
» Open MP: easy to implement

» Use Graphic Processors

> Very fast, but need additional programming skills and tools
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