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Introduction

I Basic framework (want to solve):
I Life cycle versions of Bewley-Aiyagari-Huggett model

I Features of the model

1. Idiosyncratic risks)heterogeneity
2. Aggregation,distribution dynamics

I Steady state, transition, and dynamics
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Numerical Methods

Numerical Methods

I Global solution methods
I ,local approximation methods (e.g., linear quadratic
approximations)

I around the deterministic steady-state
I RBC, New Keynesian DSGE models etc.
I called "Perturbation method"

I want to know policy functions

I Why global solution methods?

1. You may not know steady states before solving the problem
2. Heterogeneous agents model: super rich and poor
3. Income risks that individuals face is usually very large

I )Policy functions are potentially nonlinear
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Numerical Methods (cont.)

I Need some numerical methods (o¤-the-shelf techniques)
I Optimization: Judd (1998), Chap.4
I Nonlinear equations: Judd (1998), Chap.5
I Functional approximation: Judd (1998), Chap.6
I Numerical integration/di¤erentiation: Judd (1998), Chap.7

I Useful books
I Judd (1998), Marimon and Scott (1999), Miranda and Fackler
(2002), Heer and Maussner (2009)
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Numerical Methods (cont.)

1. Value function iteration (VFI)
I Finite iteration in life cycle models

2. Endogenous gridpoint method
I use the Euler equation

I Both methods are almost identical when solving life cycle
models

I All codes used here are available from
I http://homepage2.nifty.com/~tyamada/teaching/numerical.html
I written in Fortran 90/95
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Software Choice

I Matlab/Gauss/Scilab/Octave
I Languages for scienti�c computing; matrix-oriented
I Some useful tools: DYNARE, CompEcon (Miranda and
Fackler,2002)

I C/C++/Fortran:
I Packages (Not free): IMSL/NAG
I Numerical recipes (Book): Press et al. (2007)
I Subroutine libraries (Free): LAPACK/BLAS/MINPACK etc.

I Mathmatica/Maple:
I Symbolic math
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Design of this Slide

Guide Map

1. Two-period model

2. Three-period model

3. (Full) Life cycle models:

3.1 Steady State
3.2 Transition: Yamada (2011,JEDC)
3.3 Aggregate shock
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Two-period Model

Consider a two-period model (no uncertainty)

I Basic setup:

max
cY ,cO ,a0

c1�γ
Y

1� γ
+ β

c1�γ
O

1� γ
,

s.t.

cY + a
0 = y + a,

cO = ss + Ra
0

I (cY , cO ): consumption, β: discount factor
I a0: savings, a: initial asset (given), R: gross interest rate
I y : labor income (deterministic), ss: social security bene�t
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Two-period Model

Basic Framework

Calibration

I How to solve the two-period model?
I Backward induction

I Before solving the model quantitatively, we need parameters
I Usually this process is called "calibration"
I One period is 30 years: Song et al. (2009)
I β = 0.98530, γ = 2, R = 1.02530, y = 1, ss = 0.4

I What we want to know are policy functions
I cY = f Y (a): consumption function of young agents
I cO = f O (a0): consumption function of old agents
I a0 = g(a): saving function
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Numerical Methods

1. In the last period (old), agents consume all wealth
I cO = f O (a0) = ss + Ra0
I Note that R and ss are given

2. Given the consumption function of old household f O (a0), we
compute young�s policy function from the Euler equation:

u0(cY ) = βRu0(cO ),

u0(y + a� a0) = βRu0(f O (a0))

= βRu0(ss + Ra0)
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Consumption Function (Old):
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Numerical Methods

Numerical Methods (cont.)

I How to �nd the policy functions f Y (a) and g(a) for young
households from the Euler equation?

I There are some approaches

1. Discrete state space method

I Solve the Euler equation over discretized asset grids

2. Projection method: Judd (1992)

I Approximate policy functions by polynomial
I Finite element method: McGrattan (1996,JEDC)

3. Endogenous gridpoint method (EGM): Carroll (2006)
4. Parametric expectations algorithm (PEA): Christiano and
Fisher (2000)
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Numerical Methods

Discrete State Space Method

I Discretize the initial asset (grid): ai 2 famin, . . . , amaxg
I Tips: more grids near zero (if a borrowing constraint exists)

I Solve the Euler equation for each ai

u0(y + ai � a0) = βRu0(f O (a0)),

I How to solve the Euler equation?

u0(y + ai| {z }
given

� a0|{z}
choice

) = βR|{z}
params.

u0(f O (a0)| {z }
known

)
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Numerical Methods

Discrete State Space Method (cont.)

I Use nonlinear equation solver
I Find a zero of the residual:

Φ(ai ) = βR
u0(f O (a0))

u0(y + ai � a0)
� 1

I Useful techniques to �nd a zero:
I Bisection method: bisect a zero between amin and amax
I Newton methods
I Broyden�s method: a variant of Newton methods

I You can �nd several root-�nding subroutines!
I fzero: Matlab
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Numerical Methods

Discrete State Space Method (cont.)

I You have a combination of current asset and savings
I fai , a0ig ) fcig
I Use interpolation if you want to know consumption between
the discretized grids, ai < a < ai+1
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Numerical Methods

Projection Method

I In the discrete state space method, we compute a set of
discretized asset and consumption

I Approximating the saving function over state space
I E.g., monomial approximation

a0 = ĝ(a; φ) =
N

∑
n=1

φna
n�1

I Generally Chebyshev polynomial has some useful properties

a0 = ĝ(a; φ) =
N

∑
n=1

φnTn(a)

I Tn(a): Basis function, e.g., cos((n� 1) arccos a)
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Projection Method (cont.)

I Find coe¢ cients fφngNn=1 that minimizes the residual over
state Z

Φ(a; φ)da = 0

I How to compute the residual over state space?
I E.g., Collocation method

I Given evaluation points famg,

Φ(am ; φ) = 0, m = 1, . . . ,M

I m < n: impossible to determine coe¢ cients fφngNn=0!
I Other way to evaluate the residual, see text books
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Endogenous Gridpoint Method

I Usually root-�ndings (using nonlinear equation solver) need
computation time

I many iteration to �nd a zero

I Carroll (2006,EL): Endogenous Gridpoint Method
I Change the timing of discretization and state space

1. Discretize next period�s asset: a0j 2 fa01, . . . , a0Jg
2. Solve consumption function over cash-on-hand
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Endogenous Gridpoint Method (cont.)

I De�ne RHS of the Euler equation as

Γ(a0j ) � βRu0(ss + Ra0j )

I Because the marginal utility of CRRA utility function is
invertible,

u0(cY ,j ) = Γ(a0j ),

c�γ
Y ,j = Γ(a0j ),

cY ,j = Γ(a0j )
� 1

γ
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Endogenous Gridpoint Method (cont.)

I We have a pair of fcY ,j , a0jg
I cY ,j + a0j � xj (= y + a) is cash-on-hand
I We know consumption function over cash-on-hand

cY = f̂
Y (x)
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Numerical Methods

Endogenous Gridpoint Method (cont.)

But, what we really want to know is consumption over
current asset

I Retrieve current asset from the cash-on-hand

xj = y + aj ,

aj = xj � y

I Policy function is a pair of fcj , ajg: cj = f̃ Y (aj ), for
j = 1, . . . , J



Lectures on Numerical Methods

Two-period Model

Numerical Methods

Numerical Examples

1. Consumption function when old
I mentioned above

2. Consumption function when young

3. Saving function

4. Numerical errors
I Closed-form solution

a0 =
y + a� [βR ]�

1
γ ss

1+ [βR ]�
1
γR
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Consumption Function (Young)
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Saving Function
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Retrieve Current Asset

0 5 10 15
0

1

2

3

4

5

Current Asset

N
ex

t A
ss

et



Lectures on Numerical Methods

Two-period Model

Numerical Methods

Endogenous Gridpoint Method (cont.)

I This idea is applicable to any �nite (and in fact in�nite)
horizon problems

I Need FOCs

I Let�s apply the EGM to three period model!
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Three-period model
Extend the model to three-period with uncertainty

I Consider a three-period model:

maxE

"
c1�γ
Y

1� γ
+ β

c1�γ
M

1� γ
+ β2

c1�γ
O

1� γ

#
,

s.t.

cY + aM = yY + aY ,

cM + aO = yM + RaM ,

cO = ss + RaO

I (cY , cM , cO ): consumption, (aY , aM , aO ): asset holdings
I (yY , yM ): labor income
I R: gross interest rate, ss: social security bene�t
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Three-period model (cont.)

Labor income is uncertain at middle

I E.g., labor income distribution

yM = ȳM + ε,

ε � N(0, σ2ε )

I Need numerical integration techniques
I Discretize ε
I Gauss-Legendre, Gauss-Chebyshev quadrature etc.

I Consider a very simple case: fyhighM , y lowM g with prob. 12
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Three-period model (cont.)

I How to solve the model?
I Backward induction again

I Why the three-period model is NOT a trivial extension of
two-period model?

I Need an additional state variable: yM
I Need functional approximation
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Three-period model (cont.)

1. Old: cO = f O (aO ) = ss + RaO
2. Middle: solve the Euler equation for each (aM ,i , yM )

u0(yM + RaM ,i � aO ) = βRu0(f O (aO ))

I Get a policy function f̃ M (aM , yM ) using the EGM (or other
methods): fchighM ,i , a

high
M ,i g and fc lowM ,i , alowM ,ig

I This step is completely the same as in the two-period model

3. Young: solve the Euler equation again

u0(yY + RaY ,i � aM ) = βREu0(f̃ M (aM , yM ))
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Three-period model (cont.)

I Policy function at middle f̃ M (aM , yM ) is a set of discretized
points

I fchighM ,i , a
high
Y ,i g, fc lowM ,i , alowY ,ig

I What if the choice variable aM is between asset grids?

aM ,i < aM < aM ,i+1

I Interpolation
I Linear approximation: non-di¤erentiable, interp1
I Cubic spline interpolation: di¤erentiable, spline
I Shape-preserving spline interpolation: di¤erentiable with
concavity
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Three-period model (cont.)

I Calibration
I One period is 20 years
I β = 0.98520, γ = 2, R = 1.02520
I yY = 1
I yhighM = 1+ ε, y lowM = 1� ε, ε = 0.2
I ss = 0.4
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Consumption Function (Old)
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Consumption Function (Middle)
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Consumption Function (Young)
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Saving Function (Middle)
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Saving Function (Young)
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Life Cycle Models

I Generalize the simple two (three)-period models
I Bewley/Huggett/Aiyagari framework
I Agents live long periods

I Features of the model:
I Life cycle �worker and retiree
I Idiosyncratic labor income risks
I Mortality risks (for demographic change)
I Dynamic general equilibrium

1. Steady state
2. Transition
3. Aggregate shocks
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Household Problem

I A continuum of households exists
I There is no aggregate uncertainty
I Preferences are represented by

maxE1

J

∑
j=1

ξ jβ
j�1 c

1�γ
j

1� γ

I j 2 f1, . . . , j ret, . . . , Jg: age

I ξj �
j�1
∏
i=1

φi : unconditional probability of surviving to age j
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Household Problem

Budget Constraint

I Budget constraints for worker and retiree:

cj + aj+1 � (1+ r) (aj + b) + (1� τss )wηjz ,

cj + aj+1 � (1+ r) (aj + b) + ss,

aj+1 � 0.

I r : interest rate, w : wage, b: accidental bequest (de�ned later)
I ηj : age-speci�c productivity, z : idiosyncratic labor income risk
I τss : payroll tax for social security
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Household Problem (cont.)

I Idiosyncratic labor income risks
I Storesletten et al. (2004,JME) etc.

I Logarithms of hours worked follows

ln zj+1 = ρ ln zj + κj , κ � N(0, σ2κ)

I ρ: persistence, κj : disturbance
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Household Problem (cont.)

Bellman equation for workers: j = 1, . . . , j ret

Vj (a, z) = max
n
u(cj ) + φjβEVj+1(a0, z 0)

o
,

s.t.

cj + aj+1 � (1+ r) (aj + b) + wηjz ,

aj+1 � 0.
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Household Problem

Household Problem (cont.)

Bellman equation for retirees: j = j ret + 1, . . . , J

Vj (a) = max
n
u(cj ) + φjβVj+1(a

0)
o
,

s.t.

cj + aj+1 � (1+ r) (aj + b) + ss,

aj+1 � 0.
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First Order Conditions

I Euler equation:

u0 (cj ) � φjβ (1+ r)Eu0 (cj+1)

I Why inequality?
I A liquidity constraint exists: at+1 � 0

I What we want to know: policy function gj (a, z)
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Aggregating the Economy

Transition Law of Motion

I Probability space: ((A�Z),B(A�Z),Φj )

I B(A�Z): Borel σ-�eld
I Φj (a, z): probability measure

I Transition function from current state (a, z) to next state
X 2 B(A�Z)

Qj ((A�Z),X ) = ∑
z 02Z

�
Pr (z , z 0) if gj (a, z) 2 X
0 else

I The distribution function by age:

Φj+1 (X ) =
Z
Qj ((A�Z),X ) dΦj , (8X 2 B(A�Z))
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Demography

I Some households die with probability φj
I Transition of the fraction of cohort

µt+1 =
1

1+ g
φjµj

I µj : a fraction of age j , g : population growth rate
I ∑Jj=0 µj = 1: total population is normalized to one
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Production

I Aggregate capital:

K =
J

∑
j=1

µj

Z
adΦj (a, z)

I Aggregate labor (exogenously �xed):

L =
j ret

∑
j=1

µj

Z
ηjzdΦj (a, z)

I A representative �rm: Cobb-Douglas production function

Y = AK θL1�θ
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Government
I Social security system

j ret

∑
j=1

µj

Z
τsswηjzjdΦj (a, z) =

J

∑
j=j ret+1

µj ss

=
J

∑
j=j ret+1

µj ϕwL

I ss
def
= ϕwL

I Accidental bequest

b =
J

∑
j=1

µj

Z
(1� φj )gj (a, z)dΦj (a, z)
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Aggregating the Economy

De�nition of RCE

Recursive competitive equilibrium is a set of value function V ,
policy function g , interest rate r , wage w , tax rate τss , and a
distribution function Φ that satis�es the following conditions:

1. Household�s optimality

2. Firm�s optimality

r = θAK θ�1L1�θ, w = (1� θ)AK θL�θ

3. Market clearing conditions
I goods, capital and labor markets

4. Government budget constraint

5. Stationarity of distribution
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Aggregating the Economy

Steady State

Computing a Steady State: Algorithm

1. Preamble: compute aggregate labor supply L, the tax rate for
social security τss , and approximate idiosyncratic shocks

2. Initial guess: r0
3. Solve a household�s problem and get policy functions: gj (a, z)

4. Compute a cumulative density function: Φj (a, z)

5. Using the cumulative density function, compute aggregate
capital K1 and new interest rate r1

6. Check whether new interest rate r1 is su¢ ciently close to r0
6.1 Yes: It�s a steady state!
6.2 No: repeat steps 3�6 with a new interest rate
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How to Solve Life Cycle Models

1. Solving household�s problem

1.1 Value function iteration (VFI)
1.2 Projection method
1.3 Endogenous gridpoint method (EGM)

I This step is also applicable for structural estimation: See
Gourinchas and Parker (2002), Kaplan (2010)

2. Computing density function

2.1 Simulation
2.2 Approximate density function

3. Find an equilibrium price (interest rate)
I Bisection method etc.
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Solving Household�s Problem

Dynamic Programming Approach

I Good points of VFI
I Safe (contraction mapping property): not important in life
cycle models

I Useful for nonlinear problems
I Many application

I Bad points of VFI
I Generally slow (but the number of iteration is �xed in life cycle
models)
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Life Cycle Models

Solving Household�s Problem

Endogenous Gridpoint Method

I Good points of EGM
I Reliable
I Fast (need no optimization)

I Bad points of EGM
I Without FOCs, it may not be applicable (e.g., nonlinear
problems)
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Solving Household�s Problem

VFI

I Basic idea is the same as in in�nite horizon models
I Points

I Find a maximum: Optimization
I Approximation: Value function is concave

I Discretized grid
ai 2 famin, . . . , amaxg
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Solving Household�s Problem

VFI (cont.)

General idea: use backward induction again!

I Age J:
ṼJ (ai ) = u ((1+ r)(ai + b) + ss)

I Age J � 1:

ṼJ�1 (ai ) = max
a0
fu
�
(1+ r)(ai + b) + ss � a0

�
+ φjβṼJ

�
a0
�
g

I Iterate to age 1:

ṼJ (a)) ṼJ�1 (a)) � � � � � � ) Ṽj ret (a, z)) � � � � � � ) Ṽ1 (a, z)
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VFI (cont.)

I Household�s problem

Ṽj (ai , z) = max
a0
fu((1+ r)(ai + b) + wηjz � a0)

+φjβEṼj+1
�
a0, z 0

�
g

I Optimization tools: fminsearch in Matlab
I Golden search(�Bisection method)
I Quasi-Newton method

I Functional approximation:
I Ṽj+1 (a0, z 0) is generally strictly concave function
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Solving Household�s Problem

Endogenous Gridpoint Method (cont.)

I First order condition is de�ned as follows:

u0(cj ) � φjβ(1+ r)Eu
0(cj+1)

I Discretized grid: ã0 2 famin, . . . , amaxg, amin = 0
I For example, #grid= 100
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Solving Household�s Problem

Endogenous Gridpoint Method (cont.)

I Cash-on-hand of age j + 1:

x 0 �
�
(1+ r)(ã0j+1 + b) + wηj+1z
(1+ r)(ã0j+1 + b) + ss

I Right hand side of the Euler equation

Γ0(ã0, z , j) � (1+ r)φjβEc�γ
j+1

= (1+ r)φjβEfj+1(x 0, z 0)�γ

I cj = f̂j (x , z): consumption function over cash-on-hand
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Solving Household�s Problem

Endogenous Gridpoint Method (cont.)

I FOC is rede�ned as

u0(cj ) � Γ0(ã0, z , j)

I Thus, we have consumption as

cj = u0�1Γ0(ã0, z , j)

I If the Euler equation holds with strict inequality, a0 = 0, i.e.,
hand-to-mouth consumer
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How to Approximate AR(1) Process

Tauchen�s Methods

I How to calibrate idiosyncratic income risks?
I Empirical studies: Blundell et al. (2008,AER), Storesletten et
al. (2004,JPE) etc.

I How to approximate it?
I Tauchen (1986)/Tauchen and Hussey (1992)
I Floden (2007): approximation error of Tauchen�s methods
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How to Approximate AR(1) Process

Tauchen�s Methods (cont.)

I Consider AR(1) Process
I yt � log zt

yt+1 = ρyt + κt , κ � N (0, σ2κ)

yt+1 = ρyt + σy (1� λ2)
1
2 κ̃, κ̃ � N (0, 1)
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How to Approximate AR(1) Process

Tauchen�s Methods (cont.)

I Approximate AR(1) process by �nite Markov chain
I For example, 7-states

I Suppose ȳN = 3σy , ȳ1 = �3σy : State space
Y log = f�3σy ,�2σy ,�σy , 0, σy , 2σy , 3σy g

I De�ne intervals of the seven-states as follows:

I1 = [3σy ,
5
2

σy ), I2 = [�
5
2

σy ,�
3
2

σy ),

I3 = [�
3
2

σy ,�
1
2

σy ), I4 = [�
1
2

σy ,
1
2

σy ),

I5 = [
1
2

σy ,
3
2

σy ), I6 = [
3
2

σy ,
5
2

σy ),

I7 = [
5
2

σy , 3σy )
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How to Approximate AR(1) Process

Tauchen�s Methods (cont.)
I Current state: ȳ i = log z 2 Y log
)Next state: ȳ j = log z 0 2 Y log

πij = Pr
�
log z 0 = ȳ j j log z = ȳ i

�
=
Z
Ij

1p
2πσε

e�
1
2
(x�log z )2

σε dx

I Range between states is de�ned as w = ȳ k � ȳ k�1
I For each i , if j 2 [2,N � 1], then

πij = Pr
h
ȳ j � w

2
� ȳ j � ȳ j + w

2

i
= Pr

h
ȳ j � w

2
� λȳ i + εt � ȳ j +

w
2

i
= F

 
ȳ j � λȳ i + w

2

σε

!
� F

 
ȳ j � λȳ i � w

2
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Tauchen�s Methods (cont.)

I As a last step, take exponent to the log AR(1) process:
flog ztg ) fztg

I Normalize Ez = ∑z2Z zπ∞ (z) = 1 (not necessary)

Z = fz1, . . . , z7g

=

�
e�3σy

Ez
,
e�2σy

Ez
,
e�σy

Ez
,
1
Ez
,
eσy

Ez
,
e2σy

Ez
,
e3σε

Ez

�
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Density Functions

I How to compute the density function?

1. Simulation

I Easy to implement, but errors may be large (if #sample is
insu¢ cient)

I Easy to compute some statistics: variances, Gini etc.

2. Approximate density function

I Heer and Maussner (2009)/Young (2010,JEDC)
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Density Functions (cont.)
Simulation-based method

1. Generate a series of idiosyncratic income shocks for S
households, e.g. S = 10, 000

I fz ij g
10,000
i=1 : index i represents household

2. Guess initial asset distribution ai1: a1 = 0 by assumption
3. Using policy functions (we already get), compute a series of
asset holdings

ai2 = g̃1(a
i
1, z

i
1)! ai3 = g̃1(a

i
2, z

i
2)! � � �

I Notice that some households may die before J

4. Aggregation

K =
J

∑
j=1

µj

10,000

∑
i=1

aij/S
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Density Functions (cont.)
I Approximate the density function dΦj (a, z) by linear
interpolation

I Solve the density function forwardly
I Take discretized grid: ak 2 famin, . . . , amaxg

I should be �ner than policy function iteration: e.g., 10,000
grids

I A household with (a, z) saves â0 = g̃j (ak , z)
I However, â0 may not be on the discretized grid
I De�ne a weight ω as follows

ω =
â0 � a`
ah � a`

, â0 2 [a`, ah ]

I Households with (ak , z) are divided a` and ah by the rule�
Pr(z , z 0)(1�ω)dΦj (a, z)
Pr(z , z 0)ωdΦj (a, z)
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Approximated Density Function
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Find a Steady State

I Need to �nd a �xed point of interest rate
I same as in the Bewley model with in�nitely-lived agents
I Use a bisection method: Aiyagari (1994)

I Set an initial interest rate r0
I update to r1
I if iteration error is su¢ ciently small, e.g. ε = 0.00001, stop

krk+1 � rkk < ε, or,



K supply �Kdemand


 < ε

I Aggregate demand and supply curve in the model
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Capital Demand and Supply
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Calibration
How to Calibrate Life Cycle Models

I Many empirical research: choose a target
I j ret = 46, J = 81
I β = 0.97: Target is K/Y � 3
I γ = 2: microeconomic evidences
I Idiosyncratic income risks

I Blundell et al. (2008,AER) etc.
I ρ = 0.98, σκ = 0.01

I Macroeconomic variables: Japanese economy

I θ = 0.377, δ = 0.08

I Age-e¢ ciency pro�le: fηjg
I Hansen�s (1993) method

I Population distribution: fµjg
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Numerical Results

I Numerical Results
I Consumption and asset pro�les: fcj , ajgJj=0

I Economic inequality: Storesletten et al. (2004,JME)
I How much consumption insurance?

I Computation time (Fortran): 180 sec
I #grid for policy function= 100
I #grid for density function= 10, 000
I #grid for AR1 process= 15
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Consumption Pro�le
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Earnings Pro�le
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Asset Pro�le
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Inequality over Life Cycle
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Applications

I Endogenous labor supply:
I Add intra-temporal FOC to the original problem

wηj zj =
u0h(c , 1� h)
u0c (c , 1� h)

I Can we use the endogenous gridpoint method again?
I Yes: Barillas and Fernandez-Villaverde (2007), Krueger and
Ludwig (2006)
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Applications (cont.)

I Economic inequality:
I Huggett (1996,JME), Storesletten et al. (2004,JME),
Heathcote et al. (2010,JPE)

I Include transitory shocks, education background, marriage etc.

I Social security reforms:
I Imrohoroglu et al. (1995,1997)
I Need additional state variable for social security accounts

I Optimal taxation:
I Conesa, Kitao and Krueger (2008)

τ(y) = τ2

h
y � (y�τ1 + τ0)

� 1
τ1

i
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And More...

I Two natural extension of life cycle models

1. Transition path
I Social security reforms, tax reforms, aging etc.

2. Aggregate shock
I Business cycle, asset pricing etc.
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Transition

I Literature:
I Conesa and Krueger (1999)
I Nishiyama and Smetters (2007,2009)

I Why transition?
I Welfare implications may di¤er between steady state
comparison and considering transition path explicitly

I Why di¢ cult?
I Need to solve many generations problems
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Transition (cont.)

I Basic ideas:
I application of computing a steady state with very long
backward induction

I T (terminal period)! T � 1, � � � ,! 1 (initial period)
I Need computation time: several hours

I Transition path between two steady state
I Without �nal steady state, it is impossible to compute the
transition path (where to go?)

I Initial steady state is not MUST (e.g., Auerbach and Kotliko¤,
1992)

I But, you need to have an initial wealth distribution for each
age, Φj (a, z): di¢ cult to calculate
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An Example

Yamada (2011,JEDC)

I Research question: How well does the life cycle model work?
I Results: Macroeconomic variables and inequalities in Japan is,
at least partially, explained by the standard life cycle model
with macroeconomic and demographic changes

I Include deterministic TFP growth rate and demographic
change in the model:

Yt = AtK θ
t L
1�θ
t

µj+1,t+1 = φj ,tµj ,t
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Model (cont.)

Original Problem

I Bellman equation:

Vj ,t (a, s) = max
c ,a0,h

n
u(cj ,t+j , hj ,t+j ) + φj ,tβEVj+1,t+1(a0, s 0)

o

u(cj ,t+j , hj ,t+j ) =
[cσ
j ,t+j (h̄t � hj ,t+j )1�σ]1�γ

1� γ

I t: calender year, j : age
I hj ,t+j : labor supply (endogenous), h̄t : time endowment
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Model (cont.)

I Budget constraint:

cj ,t + aj+1,t+1 = (1+ (1� τcapt )rt )(aj ,t + bt ) + yj ,t

yj ,t =
�
(1� τsst � τlabt )wtηjejhj ,t
ϕtwtLt

I fτlabt , τcapt , τsst g: taxes for labor, capital and social security
system

I Idiosyncratic labor productivity shock s � (α, z , ε):

ln et = α+ zj + εj ,

ln zj+1 = ρ ln zj + κj
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Model (cont.)

I Aggregate economy:

Kt = ∑100
j=20 µj ,t

Z
aj ,tdΦj ,t (a, s)

Lt = ∑65
j=20 µj ,t

Z
ηjejhj ,t+jdΦj ,t (a, s)
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Model (cont.)

I Social security system:

∑65
j=20 µj ,t

Z
τsst wtηjejhj ,t+jdΦj ,t (a, s)

= ∑100
j=66 µj ,tϕtwtLt .

I Government budget constraint:

Gt = ∑100
j=20 µj ,t

Z
τcapt rtaj ,tdΦj ,t (a, s)

+∑65
j=20 µj ,t

Z
τlabt wtηjejhj ,t+jdΦj ,t (a, s)
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Model (cont.)

Detrended Problem

I Detrend the problem:

vj ,t (ã, s) = max
c ,a0,h

n
u(c̃j ,t+j , h̃j ,t+j ) + φj ,t β̃tEvj+1,t+1(ã

0, s 0)
o

u(c̃j ,t+j , h̃j ,t+j ) =
[c̃σ
j ,t+j (h̄t � h̃j ,t+j )1�σ]1�γ

1� γ

I c̃j ,t = cj ,t/A
1/(1�θ)
t , ãj ,t = aj ,t/A

1/(1�θ)
t , h̃j ,t = hj ,t

I β̃t = β(1+ gt )σ(1�γ), 1+ gt = A
1/(1�θ)
t+1 /A1/(1�θ)

t
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Model (cont.)

I Budget constraints of the detrended problem

c̃j ,t + (1+ gt )ãj+1,t+1 = (1+ (1� τcapt )rt )(ãj ,t + b̃t ) + ỹj ,t

ỹj ,t =
�
(1� τsst � τlabt )w̃tηjej h̃j ,t
ϕ̃w̃t L̃t
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Algorithm

1. Compute initial and �nal steady states: 1980 and 2200

2. Set an exogenous path of fgt , φt , h̄tg2200t=1980, and guess an
equilibrium sequence of fr0t , w̃0t g2200t=1980.

3. Given the policy function of the �nal steady state, compute a
sequence of policy functions using the EGM by backward
induction

4. Given the policy functions, compute the distribution function
from 1980 forwardly and compute aggregate variables,
fr1t , w̃1t g2200t=1980

5. Check whether new factor prices fr1t , w̃1t g. are su¢ ciently
close to the old ones fr0t , w̃0t g for every year. If these are not
close, update the price sequences and repeat steps 3� 4

6. If the factor prices are close in all periods, then stop!
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Algorithm (cont.)

I In step 3, use the EGM again
I FOCs:

u0c (c̃j ,t , h̄� h̃j ,t )

� φj ,t β̃t
(1+ (1� τcapt+1)rt+1)

(1+ gt )
Eu0c (c̃j+1,t+1, h̄� h̃j+1,t+1)

h̃j ,t = max

"
h̄t �

�
1� σ

σ

�
c̃j ,t

(1� τsst )w̃tηjej
, 0

#
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Algorithm (cont.)

I De�ne RHS of the Euler equation:

Γ0j ,t (ãj , sj ) =
(1+ (1� τcapt+1)rt+1)

(1+ gt )

φj ,t β̃tEj

(
[c̃σ
j+1,t+1(h̄t+1 � h̃j+1,t+1)1�σ]1�γ

c̃j+1,t+1

)
I First order condition:

u0c (c̃j ,t , h̄t � h̃j ,t ) = Γ0j ,t (ã
0, s)

I Cobb-Douglas utility function is invertible
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Example: Transition Path
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Example: Transition Path
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Example: Transition Path
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Example: Transition Path
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Example: Transition Path
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Example: Transition Path
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Example: Transition Path
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Example: Transition Path
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Aggregate Shock

I Add aggregate shock (e.g., TFP shock) in the model
I Storesletten et al. (2007,RED), Krusell et al. (2011)

I Why di¢ cult?
I Distribution a¤ects factor prices:

u0
�
cj ,t
�
� φj β (1+ r(Kt+1))Eu0

�
cj+1,t+1

�
I Distribution function in the state space

Vj (a, z ;Φ) = max
n
u(cj ) + ξj βEVj+1(a

0, z 0;Φ)
o

I Distribution function is in�nite-dimensional objects
)impossible to solve
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Aggregate Shock

I Approximate aggregation
I Krusell and Smith (1998), den Haan (1997)
I Use not exact distribution function, but moments

I E.g., approximate prediction function:

logKt+1 = β0(A) + β1(A) logKt

I Approximated Bellman equation:

Vj (a, z ;K ,A) = max
�
u(cj ) + ξ jβEVj+1(a0, z 0;K ,A)
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Solving Multi-dimensional Problems

Another Approach to Solve OLG Models

I Add another state variables)Curse of dimensionality
I E.g., physical asset and �nancial asset: 50� 50 = 2, 500

I Smolyak algorithm: sparse grid approximations
I Stochastic overlapping generations models

I Krueger and Kubler (2003,2005)
I Malin, Krueger and Kubler (2010)
I Glover, Heathcote, Krueger and Ríos-Rull (2011)

I Points:
I No idiosyncratic risks
I Explicit portfolio choices
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Computers

Advanced Topics

I Recent CPU have double/quad cores
I Core2Duo, Core i7, Xeon etc.

I Use many cores simultaneously
I MPI: need many PCs
I Open MP: easy to implement

I Use Graphic Processors
I Very fast, but need additional programming skills and tools
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